Precipitation Measurements

Any given storm is characterized by the storm's total rainfall (depth), its duration, and the average and peak intensity. A *storm hyetograph* depicts measured precipitation depth (or intensity) at a precipitation gauge as a function of time; an example is shown in Figure 3-5. This figure illustrates the typical high degree of variability of precipitation over the total duration of a storm. In this example, the total storm depth is 50.9 mm, the duration is 19 hours, and the peak intensity is 0.56 mm/minute (peak depth of 2.79 mm divided by the measurement increment of 5 minutes). The average intensity is 0.045 mm/minute, quite a bit lower than the peak intensity, since the storm duration is punctuated by periods of low and no measurable precipitation.

FIGURE 3-5 Example of a storm hyetograph at location RG2, September 20–21, 2001, Valley Creek watershed, Chester County, Pennsylvania. The time increment of measurement is 5 minutes, while the entire duration of this storm is about 16 hours.

In addition to measurements of individual storm events, precipitation data are routinely collected for longer time periods and compiled and analyzed annually when trying to understand local rainfall patterns and their impact on baseflow, water quality, and infrastructure design. Figure 3-6 shows the rainfall during 2007 at both humid (Baltimore) and arid (Phoenix) locations. Especially apparent in the Baltimore data is the fact that the majority of storm events are less than 20 mm in depth.

Several networks of precipitation gauges are available in the United States; gauge data are available online from the National Climatic Data Center (NCDC) (http://ncdc.nws.noaa.gov). High-resolution precipitation data (i.e., with measurement intervals of an hour or less) are typically not recorded except at primary weather service meteorological stations, while daily precipitation records are more extensively collected and available through the Cooperative Weather Observer Program (http://www.nws.noaa.gov/om/coop/). This distinction is important to stormwater managers because most stormwater applications require short-duration measurements or model results (minutes to hours). Fortunately, a combination of precipitation gauges and precipitation radar estimates are available to estimate precipitation depth and duration, as well as additional methods to estimate snowfall and snowpack water equivalent depth and conditions. (A thorough description of precipitation measurement by radar is given by Krajewski and Smith [2001]). While most of the conterminous United States is covered by NEXRAD radar for estimation of high-temporal-resolution precipitation at current resolutions of \sim 4 km, the radar backscatter information requires calibration and correction with precipitation gauge data, and satellite estimates of precipitation are generally not sufficiently reliable for stormwater applications. It goes without saying that the measurement, quality assurance, and maintenance of long-term precipitation records are both vital and nontrivial to stormwater management.

FIGURE 3-6 Daily precipitation totals for the Baltimore-Washington and Phoenix airports for 2007.

Precipitation Statistics

The basic characterization of precipitation is by depth-duration-frequency curves, which describe the return period, recurrence interval, and exceedance probability (terms all denoting frequency) of different precipitation intensities (depths) over different durations. The methodology for determining the curves is described in Box 3-4. Precipitation durations of interest in stormwater management range from a few minutes (important for determining peak discharge from small urban drainage areas) to a year (where the interest is in the total annual volume of runoff production). As an example, one might be interested in the return period of the 1-inch, 1-hour event, or the 1-inch, 24-hour event; the latter would have a much shorter return period, because accumulating an inch of rain over a day is much more common than accumulating the same amount over just an hour.

The National Weather Service has developed an online utility to estimate the return period for a range of depth-duration events for any place in the conterminous United States (http://hdsc.nws.noaa.gov/hdsc/pfds/). Figures 3-7 and 3-8 show examples of precipitation depth-duration-frequency curves for a humid location (Baltimore, Maryland) and an arid site (Phoenix, Arizona). As an illustration of the climatic influence on the depth-duration-frequency curves, the 2-year, 1-hour storm is associated with a depth of 1.2 inches of precipitation in Baltimore, whereas this same recurrence interval and duration are associated with a depth of only 0.6 inch of precipitation in Phoenix. Durations from 5 minutes to one day are shown because

BOX 3-4

Determining Depth-Duration-Frequency Curves

Depth-duration-frequency curves are developed from precipitation records using either annual maximum data series or annual exceedance data series. Annual maximum data series are calculated by extracting the annual maximum precipitation depths of a chosen duration from a record. In cases where there are only a few years of data available (less than 20 to 25 years), then an annual exceedance series (a type of "partial duration series") for each storm duration can be calculated, where N largest values from N years are chosen. An annual maximum series excludes other extreme values of record that may occur in the same year. For example, the second highest value on record at an observing station may occur in the same year as the highest value on record but will not be included in the annual maximum series. The design precipitation depths determined from the annual exceedance series can be adjusted to match those derived from an annual maximum series using empirical factors (Chow et al., 1988; NOAA Atlas data series, see http://www.weather.gov/oh/hdsc/currentpf.htm, e.g., Bonnin et al., 2006). Hydrologic frequency analysis is then applied the data series to determine desired return periods by fitting a probability distribution to the data to determine the return periods¹ of interest. The process is repeated for other chosen storm durations.

¹Analysis of annual maximum series produces estimates of the average period between years when a particular value is exceeded ("average recurrence interval"). Analysis of partial duration (annual exceedance) series gives the average period between cases of a particular magnitude ("annual exceedance probability"). The two results are numerically similar at rarer average recurrence intervals but differ at shorter average recurrence intervals (below about 20 years). NOAA (e.g., Bonnin et al., 2006) notes that the use of the terminology "average recurrence interval" and "annual exceedance probability" typically reflects the analysis of the two different series, but that sometimes the term "average recurrence interval" is used as a general term for ease of reference.

this is the range typically used in the design of stormwater management facilities. The shorter durations provide expected magnitude and frequency for brief but significant precipitation intensity peaks that can mobilize and transport large amounts of pollutants and erode soil, and they are used in high-resolution stormwater models. More commonly, however, stormwater regulations are written for 24-hour durations at 2-, 10-, 25-, 50-, or 100-year recurrence intervals.

Precipitation Depth-Duration-Frequency - BWI

FIGURE 3-7 Depth-duration-frequency curves for Baltimore, Maryland.

Precipitation Depth-Duration-Frequency - Phoenix Airport

FIGURE 3-8 Depth-duration-frequency curves for Phoenix, Arizona.

Because storm magnitudes and frequencies vary by climatic region, it is reasonable to expect them to change during recurring climate events (e.g., El Niño) or over the long term by climate change. Alteration in convective precipitation by major urban centers has been documented for some time (Huff and Changnon, 1973). Some evidence exists that precipitation regimes are shifting systematically toward an increase in more intense rainfall events, which is consistent with modeled projections of global climate change increases in hydrologic extremes. Kunkel et al. (1999) analyzed precipitation data from 1,295 weather stations from 1931 to 1996 across the contiguous United States and found that storms with extreme levels of precipitation have increased in frequency. The analysis considered short-duration events (1, 3, and 7 days) of 1-year and 5-year return intervals. A linear trend analysis using Kendall's slope estimator statistic indicated that the overall trend in 7-day, 1-yr events for the conterminous United States is upward at a rate of about 3 percent per decade for 1931 to 1996; the upward trend in 7-day, 5year events is about 4 percent per decade. These two time series are shown in Figure 3-9. An increased frequency of intense precipitation events will shift depth-frequency-duration curves for a given location, with a given return period being associated with a more intense event. Alternatively, the return period for a given intensity (or depth) of an event will be reduced if the event is occurring more frequently. In light of climate change, depth-duration-frequency curves will need to be updated regularly in order to ensure that stormwater management facilities are not underdesigned for an increasing intensity of precipitation. Additional implications of climate change for stormwater management are discussed in Box 3-5.

FIGURE 3-9 Nationally averaged annual U.S. time series of the number of precipitation events of 7-day duration exceeding 1-year (dots) and 5-year (diamonds) recurrence intervals. SOURCE: Reprinted, with permission, from Kunkel et al. (1999). Copyright 1999 by American Meteorological Society.

BOX 3-5 Climate Change and Stormwater Management

An ongoing report series issued by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research summarizes the evidence for climate change to date and expected impacts of climate change, including impacts on the water resources sector (<u>http://www.climatescience.gov/</u>). According to the Intergovernmental Panel on Climate Change (IPCC 2007), annual precipitation will likely increase in the northeastern United States and will likely decrease in the southwestern United States over the next 100 years. In the western United States, precipitation increases are projected during the winter, whereas decreases are projected for the summer. As temperatures warm, precipitation will increasingly fall as rain rather than snow, and snow season length and snow depth are very likely to decrease in most of the country. More extreme precipitation events are also projected, which, when coupled with an anticipated increase in rain-on-snow events, would contribute to more severe flooding due to increases in extreme stormwater runoff.

The predictions for increases in the intensity and frequency of extreme events have significant implications for future stormwater management. First, many of the design standards currently in use will need to be revised, since they are based on historical data. For example, depth-duration-frequency curves used for design storm data will need to be updated, because the magnitude of the design storms will change. Even with revised design standards, in light of future uncertainty, new SCMs will need to be designed conservatively to allow for additional storage that will be required for regions with predicted trends in increased precipitation. In addition, existing SCM designs based on old standards may prove to be undersized in the future. Implementation of a monitoring program to check existing SCM inflows against original design inflows may be prudent to aid in judging whether retrofit of existing facilities or additional stormwater infrastructure is needed.

Design Storms

Given that only daily precipitation records are widely available, but short-duration data are required for stormwater analysis and prediction, *design storms* have been developed for the different regions of the United States by different state and federal resource agencies. A *design storm* is a specified temporal pattern of rainfall at a location, created using an overall storm duration and frequency relevant to the design problem at hand. Examples of design storms include the 24-hour, 100-year event for flood control and the 24-hour, 2-year event for channel protection. The magnitude of the design storm can be derived from data at a single gauge, or from synthesized regional data published by state or federal agencies. The simplest form of a design storm is a triangular hyetograph where the base is the duration and the height is adjusted so that the area under the curve equals the total precipitation. In instances where the hyetograph is to be used to estimate sequences of shorter duration intensities (i.e., minutes to a few hours) within larger duration events, depth-duration-frequency curve data can be used to synthesize a design storm hyetograph (see Chow et al., 1988). An example design storm for the 100-year storm event for St. Louis based on NOAA Atlas 14 depth-duration-frequency data is shown in Figure 3-10.

FIGURE 3-10 Hundred-year design storm for St. Louis based on NOAA Atlas 14 data.

Conversion of Precipitation to Runoff

Dynamics of Watershed Flowpaths

Precipitation falling on the land surface is subject to evaporative loss to the atmosphere by vegetation canopy and leaf litter interception, evaporation directly from standing water on the surface and upper soil layers or impervious surfaces, and later transpiration through root uptake by vascular plants. Snowpack is also subject to sublimation (conversion of snow or ice directly to vapor), which results in the loss of a portion of the snow prior to melt. The rate of evaporative loss depends on local weather conditions (temperature, humidity, wind speed, solar radiation) and the rate and duration of precipitation. Precipitation (or snowmelt) in excess of interception and potential evaporative loss rates is then partitioned into infiltration and direct runoff.¹

There is a gradation of flowpaths transporting water, sediment, and solutes through a watershed, ranging from rapid surface flowpaths through generally slower subsurface flowpaths. Residence times generally increase from surface to subsurface flowpaths, with rapid surface flow

¹ The term *runoff* is often used in two senses. For a given precipitation event, direct *storm runoff* refers to the rainfall (minus losses) that is shed by the landscape to a receiving waterbody. In an area of 100 percent imperviousness, the runoff nearly equals the rainfall (especially for larger storms). Over greater time and space scales, *surface water runoff* refers to streamflow passing through the outlet of a catchment, including base flow from groundwater that has entered the stream channel. The raw units of runoff in either case are volume per time, but the volumetric flowrate (discharge) is often divided by contributing area to express runoff in units of depth per time. In this way, unit runoff rates from various-sized watersheds can be compared to account for differences other than the contributing area.

providing the major contribution to flood flow while subsurface flowpaths contribute to longerterm patterns of surface wetness. Watershed characteristics that influence the relative dominance of surface versus subsurface flowpaths include infiltration capacity as affected by land cover, soil properties, and macropores; subsurface structure or soil horizons with varying conductivity; antecedent soil moisture and groundwater levels; and the precipitation duration and intensity for a particular storm.

The distribution and activity of flowpaths result in changing patterns of soil moisture and groundwater depth, which result in patterns of soil properties, vegetation, and microbial communities. These ecosystem patterns, in turn, can have strong influences on the hydraulics of flow and biogeochemical transformations within the flowpaths, with important implications for sources, sinks, and transport of solutes and sediment in the watershed. Riparian areas, wetlands, and the benthos of streams and waterbodies are nodes of interaction between surface and groundwater flowpaths, yielding reactive environments in which "hot spots" of biogeochemical transformation develop (McClain et al., 2003). Thus, any alteration of surface and subsurface hydrologic flowpaths, for example due to urbanization, not only alters the properties of soil and vegetation canopy but also reforms the ecosystem distribution of biogeochemical transformations.

Runoff Measurements

Surface water runoff for a given area is measured by dividing the discharge at a given point in the stream channel by the contributing watershed area. The basic variables describing channel hydraulics include width, mean depth, slope, roughness, and velocity. Channel discharge is the product of width, depth, and velocity and is typically estimated by either directly measuring each of these three components, or by development of a rating curve of measured discharge as a function of water depth, or stage relative to a datum, of the channel that is more easily estimated by a staff gauge or pressure transducer. The establishment of a gauging station to measure discharge typically requires a stable cross section so that stage can be uniquely related to discharge. Maintenance of reliable, long-term gauge sites is expensive and requires periodic remeasurement to update rating curves, as well as to remove temporary obstructions that may raise stage relative to unobstructed conditions.

Most stream gauging in the United States is carried out by the USGS, and can be found on-line at http://waterdata.usgs.gov/nwis. Recent reviews of standard methods of stream gauging and the status of the USGS stream gauging network are given by the USGS (1998) and the National Research Council (NRC, 2004). A major concern is the overall decline in the number of active gauges, particularly long-term gauges, as well as the representativeness of the stream gauge network relative to the needs of stormwater permitting. For example, restored streams typically lack any gauged streamflow or water quality information prior to or following restoration. This makes it very difficult to assess both the potential for successful restoration and whether project goals are met.

Support of existing and development of new gauges is often in collaboration through a co-funding mechanism with other agencies. Municipal co-funding for stations in support of National Pollutant Discharge Elimination System (NPDES) permitting is common and has tended to shift the concentration of active gauges toward more urban areas. Note that the USGS river monitoring system was originally designed for resource inventory, and therefore did not

PREPUBLICATION

originally sample many headwater streams, particularly intermittent and ephemeral channels that are typically most proximal to stormwater discharges. While this is beginning to change with municipal co-funding, headwater streams are still underrepresented in the National Water Information System relative to their ecological significance.

Reliable records for stream discharge are vital because the frequency distribution and temporal trends of flows must be known to evaluate long-term loading to waterbodies. Magnitude and frequency analysis of sediment and other stream constituent loads consists of a transport equation as a function of discharge, integrated over the discharge frequency distribution (e.g., Wolman and Miller, 1960). Different constituent loads have different forms of dependency on discharge, but are often nonlinear such that long-term or expected loads cannot be simply evaluated from mean flow conditions. Similar to precipitation, discharge levels often follow an Extreme Value distribution, dependent on climate, land use, and hydrogeology, but which is typically dampened compared to precipitation due to the memory effects of subsurface storage and flows (e.g., Winter, 2007).

Impacts of Urbanization on Runoff

Shift from Infiltration and Evapotranspiration to Surface Runoff

Replacement of vegetation with impervious or hardened surfaces affects the hydrologic budget—the quantity of water moving through each component of the hydrologic cycle—in a number of predictable ways. As the percent of the landscape that is paved over or compacted is increased, the land area available for infiltration of precipitation is reduced, and the amount of stormwater available for direct surface runoff becomes greater, leading to increased frequency and severity of flooding. Reduced infiltration of precipitation leads to reduced recharge of the groundwater reservoir; absent new sources of recharge, this can lead to reduction in base flow of streams (e.g., Simmons and Reynolds, 1982; Rose and Peters, 2001). Vegetation removal also results in a lower amount of evapotranspiration compared to undeveloped land. This can have particularly profound hydrologic effects in those regions of the country where a significant percent of precipitation is evapotranspirated, such as the arid Southwest (Ng and Miller, 1980). Figure 3-11 illustrates the changes to these components of the hydrologic budget as the percent of impervious area is increased.

It should be noted that the conversion in hydrology from infiltrated water to surface runoff following urbanization is not entirely straightforward in all cases. Leaking pressurized water supply pipes and sanitary sewers, subsurface discharge of septic system effluent (Burns et al., 2005), infiltration of stormwater from unlined detention ponds, and lawn irrigation can offset reduced infiltration of precipitation, such that stream baseflow levels may actually be increased, especially during low base flow months, when such effects would be most pronounced (Konrad and Booth, 2005; Meyer, 2005). Cracks in sealed surfaces can also provide concentrated points of infiltration (Sharp et al., 2006).

FIGURE 3-11 As land cover changes from vegetated and undeveloped (upper left) to developed with increased connected impervious surfaces (lower right), the partitioning of precipitation into other components of the hydrologic cycle is shifted. Evapotranspiration and shallow and deep infiltration are reduced, and surface runoff is increased. SOURCE: Adapted from the Federal Interagency Stream Restoration Working Group (FISRWG, 2000).

Relationship Between Imperviousness, Drainage Density, and Runoff

Excess runoff due to urbanization is a direct reflection of the land uses onto which the precipitation falls, as well as the presence of drainage systems that receive stormwater from many separate source areas before it enters receiving waters. Thus, a functional way of partitioning urban areas is by the nature of the impervious cover and by its connection to the drainage system, underlying the differentiation of total impervious area and effective impervious area discussed in Box 1-2.

As examples of how runoff changes with urbanization, Figure 3-12 shows daily stream flow values for a low-density suburban catchment and a high-density urban catchment in the Baltimore, Maryland area. The low-density site (Figure 3-12A) shows a strong seasonal signal and a marked decline in flow during an extreme drought in 2002. In contrast, the more densely urbanized catchment (Figure 3-12B) shows a much greater variability in flow that is dominated

FIGURE 3-12 Daily time series of flows in (A) a low-density suburban and forested catchment (Baisman Run, http://waterdata.usgs.gov/md/nwis/uv/?site_no=01583580) and (B) a catchment dominated by medium- to high-density residential and commercial land uses (Dead Run, http://waterdata.usgs.gov/md/nwis/uv/?site_no=01589330). Both lie within the Piedmont physiographic province.

by impervious surface runoff, and a dampened response to the drought because natural groundwater flow is a much smaller component of the total discharge.

The percentage of time a discharge level is equaled or exceeded is displayed by flow duration curves, which show the cumulative frequency distributions of flows for a given duration. Examples for three catchments in the Baltimore area are given in Figure 3-13, showing the tendency for urban areas to produce high flows with much longer aggregate durations.

As another example of how runoff changes with imperviousness, a locally calibrated version of WinSLAMM was used to investigate the relationships between watershed and runoff characteristics for 125 individual neighborhoods in Jefferson County, Alabama (Bochis-Micu and Pitt, 2005). Figure 3-14 shows the relationships between the directly connected impervious area values and the calculated volumetric runoff coefficient (R_v , which is the volumetric fraction of the rainfall that occurs as runoff), based on 43 years of local rain data. As expected, there is a strong relationship between these parameters for both sandy and clayey soil conditions. It is interesting to note that the R_v values are relatively constant until values of directly connected impervious cover of 10 to 15 percent are reached (at R_v values of about 0.07 for sandy soil areas and 0.16 for clayey soil areas)—the point where receiving water degradation typically has been observed to start (as discussed later in the chapter). The 25 to 30 percent directly connected impervious levels (where significant degradation is usually observed) is associated with R_v values of about 0.14 for sandy soil areas and 0.25 for clayey soil areas; this is where the curves start to greatly increase in slope.

FIGURE 3-14 Relationships between the directly connected impervious area (%) and the calculated volumetric runoff coefficients (R_v) for (A) sandy soil and (B) clayey soil. SOURCE: Reprinted, with permission, from Bochis-Micu and Pitt (2005). Copyright 2005 by Water Environment Federation, Alexandria, Virginia.

PREPUBLICATION

Relationship Between Runoff and Rainfall Conditions

The runoff that results from various land uses also varies depending on rainfall conditions. For small rain depths, almost all the runoff originates solely from directly connected impervious areas, as disconnected areas have most of their flows infiltrated (Pitt, 1987). For larger storms, both directly connected and disconnected impervious areas contribute runoff to the stormwater management system. For example, Figure 3-15 (created using WinSLAMM; Pitt and Voorhees, 1995) shows the relative runoff contributions for a large commercial/mall area in Hoover, Alabama, for different rains (Bochis, 2007). In this example, about 80 percent of the runoff originates from the parking areas for the smallest runoff-producing rains. This contribution decreases to about 55 percent at rain depths of about 0.5 inch (13 mm). This decrease in the importance of parking areas as a source of runoff volume is associated with an increase in runoff contributions from streets and directly connected roofs. In many areas, pervious areas are not hydrologically active until the rain depths are relatively large and are not significant runoff contributors until the rainfall exceeds about 25 mm for many land uses and soil conditions. However, compacted urban soils can greatly increase the flow contributions from pervious areas during smaller rains. Burges and others (1998), for example, found that more than 60 percent of the storm runoff in a suburban development in western Washington State originated from nominally "green" parts of the landscape, primarily lawns.

A further example illustrating the relationship between rainfall and runoff is given for Milwaukee, summarized in Box 3-6. The two curves of Figure 3-16 show a relationship between rainfall and runoff that is typical of urban areas. Very small storms (< 0.05 inch) produce no measurable runoff, owing to removal by interception storage and evaporation. Storms that deposit up to one inch of rainfall constitute about 90 percent of the storm events in this region, but these events produced only about 50 percent of the runoff. Very large events (greater than 3 inches of precipitation) are rare and destructive, accounting for only a few percent of the annual rainfall events.

FIGURE 3-15 Surfaces contributing to runoff for an example commercial/mall area. SOURCE: Reprinted, with permission, from Bochis (2007). Copyright 2007 by Celina Bochis.

PREPUBLICATION

BOX 3-6 Example Rainfall and Runoff Distributions

Figure 3-16 is an example of rainfall and runoff observed at Milwaukee, Wisconsin (Bannerman et al., 1983), as monitored during the Nationwide Urban Runoff Program (NURP) (EPA, 1983). This observed distribution is interesting because of the unusually large rains that occurred twice during the monitoring program. These two major rains would be in the category of design storms for conventional drainage systems. These plots indicate that these very large events, in the year they occurred, caused a measureable fraction of the annual pollutant loads and runoff volume discharges, but smaller events were responsible for the vast majority of the discharges. In typical years, when these rare design events do not occur, their pro-rated contributions would be even smaller.

FIGURE 3-16 Milwaukee rainfall and runoff probability distributions, and pollutant mass discharge probability distributions (1981 to 1983). Rain count refers to the number of rain events. SOURCE: Data from Bannerman et al. (1983).

More than half of the runoff from this typical medium-density residential area was associated with rain events that were smaller than 0.75 inch. Two large storms (about 3 and 5 inches in depth), which are included in the figure, distort this figure because, on average, the Milwaukee area only expects one 3.5-inch storm about every five years, and 5-inch storms even less frequently. If these large rains did not occur, such as for most years, then the significance of the smaller rains would be even greater. The figure also shows the accumulated mass discharges of different pollutants (suspended solids, chemical oxygen demand [COD], phosphates, and lead) monitored during the Milwaukee NURP project. When these figures are compared, it is seen that the runoff and pollutant mass discharge distributions are very similar and that variations in the runoff volume are much more important than variations in pollutant concentrations (the mass divided by the runoff volume) for determining pollutant mass discharges.

These rainfall and runoff distributions for Milwaukee can thus be divided into four regions:

• Less than 0.5 inch. These rains account for most of the events, but little of the runoff volume, and they are therefore easiest to control. They produce much less pollutant mass discharge and probably have less receiving water effects than other rains. However, the runoff pollutant concentrations likely exceed regulatory standards for several categories of critical pollutants (bacteria and some total recoverable heavy metals). They also cause large numbers of overflow events in uncontrolled combined

continues next page

BOX 3-6 Continued

sewers. These rains are very common, occurring once or twice a week (accounting for about 60 percent of the total rainfall events and about 45 percent of the total runoff-generating events), but they only account for about 20 percent of the annual runoff and pollutant discharges. Rains less than about 0.05 inch did not produce noticeable runoff.

• 0.5 to 1.5 inches. These rains account for the majority of the runoff volume (about 50 percent of the annual volume for this Milwaukee example) and produce moderate to high flows. They account for about 35 percent of the annual rain events, and about 20 percent of the annual runoff events, by number. These rains occur on average about every two weeks from spring to fall and subject the receiving waters to frequent high pollutant loads and moderate to high flows.

• **1.5 to 3 inches**. These rains produce the most damaging flows from a habitat destruction standpoint and occur every several months (at least once or twice a year). These recurring high flows, which were historically associated with much less frequent rains, establish the energy gradient of the stream and cause unstable streambanks. Only about 2 percent of the rains are in this category, but they are responsible for about 10 percent of the annual runoff and pollutant discharges.

• Greater than **3 inches.** The rains in this category are included in design storms used for traditional drainage systems in Milwaukee, depending on the times of concentration and rain intensities. These rains occur only rarely (once every several years to once every several decades, or less frequently) and produce extremely large flows that greatly exceed the capacities of the storm drainage systems, causing extensive flooding. The monitoring period during the Milwaukee NURP was unusual in that two of these events occurred. Less than 2 percent of the rains were in this category (typically <<1 percent would be in this category), and they produced about 15 percent of the annual runoff quantity and pollutant discharges. However, when they do occur, substantial property and receiving water damage results (mostly associated with habitat destruction, sediment scouring, and the flushing of organisms great distances downstream and out of the system). The receiving water can conceivably recover naturally to pre-storm conditions within a few years. These storms, while very destructive, are sufficiently rare that the resulting environmental problems do not justify the massive controls that would be necessary to decrease their environmental effects.

Alteration of the Drainage Network

As shown in Figure 3-17, urbanization disrupts natural systems in ways that further complicate the hydrologic budget, beyond the imperviousness effects on runoff discussed earlier. As an area is urbanized, lower-order stream channels are typically re-routed or encased in pipes and paved over, resulting in a highly altered drainage pattern. The buried stream system is augmented by an extensive system of storm drains and pipes, providing enhanced drainage density (total lengths of pipes and channels divided by drainage area) compared to the natural system. Figure 3-18 shows how the drainage density of Baltimore today compares to the natural watershed before the modern stormwater system was fully developed. The artificial drainage system occupies a greater percentage of the landscape compared to natural conditions, permanently altering the terrestrial component of the hydrologic cycle.

The Urban Water Cycle

FIGURE 3-17 Alteration of the natural hydrologic cycle by the presence of piped systems. Blue arrows represent the natural system; red arrows indicate short-circuiting due to piped systems. Note that several elements of the water cycle shown in this diagram are not considered in this report, such as septic systems, interbasin transfers of water and wastewater, and the influence of groundwater withdrawals. SOURCE: Courtesy of Kenneth Belt, USDA Forest Service, Baltimore, Maryland.

Flowpaths are altered in other ways by urban infrastructure. Buried stormwater and sewer pipes can act as infiltration galleries for groundwater, causing shortened groundwater flowpaths between groundwater reservoirs and stream systems. Natural surface water pathways are often interrupted or reversed, as shown by the blue lines in Figure 3-19 for a drainage system in Baltimore. Understanding how the system operates as a whole can often require knowledge of the history of construction conditions and field verification of the actual flow paths.

Large-scale infrastructure such as dams, ponds, and bridges can also have a major impact on stormwater flows. Figure 3-20 illustrates the interruption of the drainage network by bridges and culverts, even in places where there have been attempts to keep excessive development out of the riparian corridor. Simulations and post-flood mapping in areas around Baltimore have shown that bridge abutments such as those shown in Figure 3-20 can slow down channel floodwaters during storms. This is because water backs up behind bridges constructed across the floodplain and spreads out over land surfaces and then flows back into channels as floodwaters subside. Although reducing the severity of downstream flooding, this phenomenon also interrupts the transport of sediment, leading to local zones of both enhanced deposition and downstream scour.

FIGURE 3-18 Baltimore City before and after development of its stormwater system. The lefthand panel shows first- and second-order streams lost to development. The right-hand panel shows the increase in drainage density resulting from construction of the modern storm-drain network. SOURCE: Courtesy of William Stack, Baltimore Department of Public Works.

Alteration of Travel Times

The combination of impervious surface and altered drainage density provides significantly more rapid hydraulic pathways for stormwater to enter the nearest receiving waterbody compared to a natural landscape. This is illustrated quantitatively by Figure 3-21, which shows that the lag time—the difference in time between the center of mass of precipitation and the center of mass of the storm response hydrograph—is reduced for an urbanized landscape compared to a natural one.

The increase in surface runoff volumes and reduction in lag times between precipitation and a waterbody's response give rise to greater velocities and volumetric discharges in receiving waters. Storm hydrographs in a developed setting peak earlier and higher than they do in undeveloped landscapes. This altered flow regime is of concern to property owners because upstream development can increase the probability of a flood-prone property being inundated. Properties in the floodplain and near stream channels are particularly susceptible to flooding from upstream development. Such increased flood risk is accompanied by associated potential property damages and costs of replacement or repair.

FIGURE 3-19 Dead Run drainage system, Baltimore, Maryland. Blue lines indicate surface (daylighted) drainage; orange indicates the subsurface storm-drain system. The surface drainage system is highly disconnected. From the coverage it is difficult to impossible to discern the flow direction of some of the surface drainage components. SOURCE: Reprinted, with permission, from Meierdierks et al. (2004). Copyright 2004 by the American Geophysical Union.

Effects of Urbanization on Watersheds

FIGURE 3-20 Shaded-relief lidar image of a portion of the Middle Patuxent River valley in Howard County, Maryland, showing the pervasive interruption of the drainage network by bridges and culverts, even in places where there is an attempt to keep excessive development out of the riparian corridor. SOURCE: Reprinted, with permission, from Miller, University of Maryland, Baltimore County. Copyright 2006 by Andrew J. Miller.

Various descriptors can be used to quantify the effects of urbanization on streamflow including flood frequency, flow duration, mean annual flood, discharge at bankfull stage, and frequency of bankfull stage. The "classic" view of urban-induced changes to runoff was presented by Leopold (1968), who provided several quantitative descriptors of the effects of urbanization on the mean annual flood. For example, Figure 3-22 shows the ratio of discharge before and after urbanization for the mean annual flood for a 1-square-mile area as a function of percentage of impervious area and percentage area served by a storm-drain system. This shows that for unsewered areas, increases from 0 to 100 percent impervious area will increase the peak discharge by a factor of 2.5. However, for 100 percent sewered areas, the ratio of peak discharges ranges from 1.7 to 8 for 0 to 100 percent impervious area. Clearly both impervious surfaces and the presence of a storm-drain system combine to increase discharge rates in receiving waters. Combining this information with regional flood frequency data, a dischargefrequency relationship can be developed that shows the expected discharge and recurrence interval for varying degrees of storm-drain coverage and impervious area coverage. An example is shown in Figure 3-23, using data from the Brandywine Creek watershed in Pennsylvania (Leopold, 1968). Bankfull flow for undeveloped conditions in general has a recurrence interval of about 1.5 years (which, in the particular case of the Brandywine, was 67 cubic feet per second); with 40 percent of the watershed area paved, this discharge would occur about three times as often.

FIGURE 3-21 Illustration of the effect of urbanization on storm hydrograph lag time, the difference in time between the center of mass of rainfall and runoff response before and after urbanization. SOURCE: Leopold (1968).

PREPUBLICATION

142

FIGURE 3-22 Ratio of peak discharge after urbanization to peak discharge before urbanization for the mean annual flood for a 1-square-mile drainage area, as a function of percent impervious surface and percent area drained by storm sewers. SOURCE: Leopold (1968).

143

PREPUBLICATION

FIGURE 3-23 Flood frequency curves as a function of percent impervious area and percent of area serviced by storm sewers. The unurbanized data are from Brandywine Creek, Pennsylvania. SOURCE: Leopold (1968).

Over the past four decades since this first quantitative characterization of urban hydrology, a much greater variety of hydrologic changes resulting from urbanization has been recognized. Increases in peak discharge are certainly among those changes, and they will always gather attention because of their direct impact on human infrastructure and potential for more frequent and more severe flooding. The extended duration of flood flows, however, also affects natural channels because of the potential increase in erosion. Ecological effects of urban-altered flow regimes are even more diverse, because changes in the sequence and frequency of high flows, the rate of rise and fall of the hydrograph, and even the season of the year in which high flows can occur all have significant ecological effects and can be dramatically altered by watershed urbanization (e.g., Rose and Peters, 2001; Konrad et al., 2005; Roy et al., 2005; Poff et al., 2006).

The overarching conclusion of many studies is that the impact of urbanization on the hydrologic cycle is dramatic. Increased impervious area and drainage connectedness decreases stormwater travel times, increases flow rates and volumes, and increases the erosive potential of streams. The flooding caused by increased flows can be life-threatening and damaging to property. As described below, changes to the hydrologic flow regime also can have deleterious

effects on the geomorphic form of stream channels and the stability of aquatic ecosystems. Although these impacts are commonly ignored in efforts to improve "water quality," they are inextricably linked to measured changes in water chemistry and must be part of any attempt to recover beneficial uses that have been lost to upstream urbanization.

Geomorphology

Watershed geomorphology is determined by the arrangement, interactions, and characteristics of component landforms, which include the stream-channel network, the interlocking network of ridges and drainage divides, and the set of hillslopes between the channel (or floodplain) and ridge. The stream and ridge systems define complementary networks, with the ridge (or drainage divide) network separating the drainage areas contributing to each reach in the stream network. At the hillslope scale, the ridges provide upper boundaries of all surface flowpaths which converge into the complementary stream reaches. A rich literature describes the topology and geometry of stream and ridge networks (e.g., Horton, 1945; Strahler, 1957, 1964; Shreve, 1966, 1967, 1969; Smart, 1968; Abrahams, 1984; Rodriguez-Iturbe et al., 1992).

Besides stream channels, a variety of other water features and landforms make up a watershed. Fresh waterbodies (ponds, lakes, and reservoirs) are typically embedded within the stream network, while wetlands may be either embedded within the stream network or separated and upslope from the channels. Estuaries represent the interface of the stream network with the open ocean. Additional fluvial and colluvial landforms include alluvial fans, landslide features, and a set of smaller features within or near the channels and floodplains including bar deposits, levees, and terraces. Each of these landforms are developed and maintained by the fluvial and gravitational transport and deposition of sediment, and are therefore potentially sensitive to disruption or alteration of flowpaths, hydrologic flow regimes, and sediment supply.

Stream Network Form and Ordering Methods

Most watersheds are fully convergent, with tributary streams combining to form progressively larger channels downstream. The manner is which streams from different source areas join to produce mainstreams strongly influences the propagation of stormwater discharge and pollutant concentrations, and the consequent level of ecological impairment in the aquatic ecosystem.

Methods for indexing the topologic position of individual reaches within the drainage network have been introduced by Horton (1945), Strahler (1957), Shreve (1966, 1967) and others. All stream topologic systems are dependent on the identification of first-order streams— the most upstream element of the network—and their lengths and drainage areas. Unfortunately, no universal standards exist to define where the stream head is located, or whether perennial, intermittent, and ephemeral channels should be considered in this determination. While this may seem like a trivial process, the identification and delineation of these sources effectively determines what lengths and sections of channels are defined to be *waterbodies* and, thus, the classification of all downstream waterbodies.

PREPUBLICATION

Nadeau and Rains (2007) have recently reviewed stream-channel delineation in the United States using standardized maps and hydrographic datasets to better relate climate to the extent of perennial, intermittent, and ephemeral channel types. Because this may influence the set of stream channels that are regulated by the Clean Water Act (CWA), it is the subject of current legal arguments in courts up to and including the Supreme Court (e.g., *Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers*, 531 U.S. 159 [2001], *John A. Rapanos et al. vs. United States* [U.S., No. 04-1034, 2005]). In addition to the stream-channel network, additional features (discussed below) that are embedded in or isolated from the delineated stream network (lakes, ponds, and wetlands) are subject to regulation under the CWA based on their proximity or interaction with the defined stream and river network. Therefore, definition of the extent and degree of connectivity of the nation's stream network, with an emphasis on the headwater region, is a critical determinant of the set of waterbodies that are regulated for stormwater permitting (Nadeau and Rains, 2007).

Stream Reach Geomorphology

Within the channel network, stream reaches typically follow a regular pattern of changes in downstream channel form. Hydraulic geometry equations, first introduced by Leopold and Maddock (1953), describe the gross geomorphic adjustment of the channel (in terms of average channel depth and width) to the flow regime and sometimes the sediment supply. Within this general pattern of larger flows producing larger channels, variations in channel form are evident, particularly the continuum among straight, meandering, or braided patterns. These forms are dependent on the spatial and temporal patterns of discharge, sediment supply, transport capacity, and roughness elements.

Most natural channels have high width-to-depth ratios and complexity of channel form compared with engineered channels. Meanders are ubiquitous self-forming features in channels, created as accelerated flow around the outside of the meander entrains and transports more sediment, producing greater flow depths and eroding the bank, while decelerated flow on the inside of the meander results in deposition and the formation of lower water depth and bank gradients. These channels typically show small-scale alternation between larger cross sections with lower velocities and defining pools, and smaller cross sections with higher velocity flow in riffles. Braided streams form repeated subdivision and reconvergence of the channel in multiple threads, with reduced specific discharge compared to a single channel. Natural obstructions including woody debris, boulders, and other large (relative to channel dimensions) features all contribute to hydraulic and habitat heterogeneity. The complexity of these channel patterns contributes to hydraulic roughness, further dissipating stream energy by increasing the effective wetted perimeter of the channel through a valley and deflecting flow between banks.

Embedded Standing Waterbodies

Standing waterbodies include natural, constructed, or modified ponds and lakes and are characterized by low or near-zero lateral velocity. They can be thought of as extensions of pools within the drainage network, although there is no clear threshold at which a pool can be defined as a pond or lake. When they are embedded within the channel network, they are characterized

with much greater cross-sectional area (width x depth), lower surface water slopes (approaching flat), and lower velocities than a stream reach of similar length. Therefore, standing waterbodies function as depositional zones, have higher residence times, and provide significant storage of water, sediment, nutrients, and other pollutants within the stream network.

Riparian Zone

The riparian area is a transitional zone between the active channel and the uplands, and between surface water and groundwater. The area typically has shallower groundwater levels and higher soil moisture than the surrounding uplands, and it may support wetlands or other vegetation communities that require higher soil moisture. Riparian zones provide important ecosystem functions and services, such as reducing peak flood flows, transforming bioavailable nutrients into organic matter, and providing critical habitat.

In humid landscapes, a functioning riparian area commonly is an area where shallow groundwater forms discharge seeps, either directly to the surface and then to the stream channel or through subsurface flowpaths to the stream channel. The potential for high moisture and organic material content provides an environment conducive to anaerobic microbial activity, which can provide effective sinks for inorganic nitrogen by denitrification, reducing nitrate loading to the stream channel. However, the width of the effective riparian zone depends on local topographic gradients, hydrogeology, and the channel geomorphology (Lowrance et al., 1997). In steeply incised channels and valleys, or areas with deeper flowpaths, the riparian zone may be narrow and relatively well drained.

Under more arid conditions with lower groundwater levels, riparian areas may be the only areas within the watershed with sufficient moisture levels to support significant vegetation canopy cover, even though saturation conditions may occur only infrequently. Subsurface flowpaths may be oriented most commonly from the channel to the bed and banks, forming the major source of recharge to this zone from periodic flooding. In monsoonal climates in the U.S. southwest, runoff generated in mountainous areas or from storm activity may recharge riparian aquifers well downstream from the storm or snowmelt activity. Channelization that reduces this channel-to-riparian recharge may significantly impair riparian and floodplain ecosystems that provide critical habitat and other ecosystem services (NRC, 2002).

Floodplains

The presence and distribution of alluvial depositional zones, including floodplains, is dependent on the distribution and balance of upstream sediment sources and sediment transport capacity, the temporal and spatial variability of discharge, and any geological structural controls on valley gradient. Lateral migration of streams contributes to the development of floodplains as the outer bank of the migrating channel erodes sediment and deposition occurs on the opposite bank. This leads to channels that are closely coupled to their floodplains, with frequent overbank flow and deposition, backwater deposits, wetlands, abandoned channels, and other floodplain features. During major events, overbank flooding and deposition adds sediment, nutrients, and contaminants to the floodplain surface, and may significantly rework preexisting deposits and